Week 1: Introduction to Experimental Optimization **AIM-5014-1A: Experimental Optimization**

David Sweet // 20230601

Career trajectory

Motivation to take EO

Good idea, bad result

Industrial engineered systems Predictors in controllers

Controller	Prediction	Action	Business Metric
Ad server	P{click}	Show ad with highest P{click}	CPC revenue
Fraud detector	P{fraudulent}	Hold charges with high P{fraudulent} until customer gives OK	Avoid losing money to fraud
Trading strategy	E[return]	Buy when E[return] > 0, sell when E[return] < 0	Revenue ("PnL")
Social media feed	P{like}	Show posts with highest P{like}	Users spend more time on feed

Evaluation

- Complexity in system, environment
 - Hard to reason about business metric
 - Hard to simulate/estimate business metric
 - Better test-set RMSE \Rightarrow Better business metric
- Measure business metric in production

Measurement problems

- Expensive: Dollars, time, risk
- Bias and variance

Experimental methods

- Control bias and variance of measurements
- Minimize experimentation cost

Sidebar: Experimentation is everywhere

- Experimentation enables
 - steady improvement
 - understanding
- in
 - medicine, psychology, behavioral economics, web search, online advertising, social media, food engineering, manufacturing, food production, energy, finance

Stylized History of Experimentation (Decade precision)

- 1920: A/B testing, Fisher [agriculture]
- 1930: Bandits / sequential experiments, Thompson
- 1940: Response surface methodology (RSM), Hotelling, Box & Wilson [chemical processes]
- 1950: Bandits / sequential, Wald [manufacturing]
- 1960: Total Quality Management, Toyota [automotive manufacturing]
- 1970: Bayesian optimization (BO), Mockus; Krige [mining]
- 1980: Six Sigma, Motorola / GM; [broad dissemination, manufacturing]
- 1990: Bayesian optimization (E.G.O.), Jones

Internet redux Same pattern, only faster

- 2000: A/B testing in web-scale systems
- 2010: Multi-armed Bandits (MAB) in web-scale systems
- 2020: Bayesian optimization (BO) in web-scale systems

Semester outline Faster still

- A/B testing: randomization, replication, design
- RSM: continuous parameters, surrogate, offline optimization
- MAB: sequential decisions, exploration vs. exploitation
- BO: All of the above and more, automated, SOTA
 - aka: adaptive experimentation, black box optimization, model-based optimization

Homework **Standard format**

- One Jupyter notebook
 - Single file, .ipynb
- May include:
 - Markdown, LaTeX
 - Images of handwritten work (math, diagrams)
 - Code, Plots \bullet

Mid-term Project Measure three versions: A, B, C

- Individual work
- Compare three versions of a system using the methods presented so far in class.
- Turn in one Jupyter notebook with measurements, analysis, and conclusion Deliver a 5-minute in-class presentation

Mid-term Project Measure three versions: A, B, C

- Measurement server: <u>http://54.87.232.77:8080</u>
- Serves one measurement / day for each of A, B, C
- May query the server as often as you like
 - manually or via script
- Serves json

Class Discussion

- Three discussion points
 - Announced one week before lecture
- Three students chosen randomly
 - In lecture

 - 5-10 minutes

To present and lead a short discussion on one of the discussion points

Readings for Week 2

- Chapter 2 of Experimentation for Engineers A/B testing: Evaluating a modification to your system
- A Refresher on A/B Testing https://hbr.org/2017/06/a-refresher-on-ab-testing
- Catalog of Biases https://catalogofbias.org/biases/
- Accuracy vs Precision: Differences & Examples https://statisticsbyjim.com/basics/accuracy-vs-precision/

Discussion for Week 2

- Compare mean and expectation.
- Compare the terms standard deviation and standard error.
- What is confounder bias?

Summary

- Evaluate changes by comparing business metric values
- Measure your business metric with experimental methods
- Experimental methods
 - Control bias and variance
 - Minimize experimentation cost
- Follow a monotonic-improvement workflow